Tính chất cận-trên-nhỏ-nhất Cận trên đúng

Tính chất cận-trên-nhỏ-nhất là một ví dụ về tính chất đủ mà rất đặc trưng cho tập các số thực. Đôi khi nó có được gọi là tính đủ Dedekind.

Nếu một tập được sắp S có tính chất là mọi tập con không rỗng của nó có một cận trên thì cũng có cận trên đúng thì S được gọi là có tính chất cận-trên-nhỏ-nhất. Như đã trình bày ở trên, tập R các số thực có tính chất cận-trên-nhỏ-nhất. Tương tự, tập Z các số nguyên cũng có tính chất cận-trên-nhỏ-nhất, nếu S là tập con không rỗng của Z và có một số n sao cho mọi phần tử s của S nhỏ hơn hay bằng n,khi đó có một cận trên nhỏ nhất u của S, đó là một cận trên của S và nhỏ hơn hay bằng mọi cận trên khác của S. Một tập được sắp tốt cũng có tính chất cận-trên-nhỏ-nhất.

Một ví dụ về một tập không có tính chất cận-trên-nhỏ-nhất là Q, tập số hữu tỉ. Giả sử S là tập các số hữu tỉ q sao cho q2 < 2. Dễ thấy S có một cận trên (chẳng hạn là 6) nhưng không có cận trên nhỏ nhất trong Q. Giả sử p ∈ Q là một cận trên của S, tức p2 > 2. Khi đó chọn q = (2p+2)/(p + 2) thì q cũng là cận trên của S, và q < p. (Để chứng minh điều này, cần lưu ý rằng q = p − (p2 − 2)/(p + 2), và p2 − 2 là một số dương.)

Có ‘tính chất cận-dưới-lớn-nhất’ tương ứng với ‘tính-chất-cận-trên-nhỏ-nhất’; một tập được sắp có tính chất cận-dưới-lớn-nhất khi và chỉ khi nó cũng có tính-chất-cận-trên-nhỏ-nhất; cận-trên-nhỏ-nhất của tập gồm các cận dưới của một tập là cận-dưới-lớn-nhất, và cận-dưới-lớn-nhất của tập gồm các cận trên của một tập là cận-trên-nhỏ-nhất của tập đó.

Nếu trong một tập được sắp từng phần P, mọi tập con bị chặn của nó đều có cận trên đúng, thì điều này cũng áp dụng được cho mọi tập X, trong không gian hàm chứa tất cả các hàm từ X đến P, trong đó quy định f ≤ g nếu và chỉ nếu f(x) ≤ g(x) với mọi x trong X. Lấy ví dụ, điều này áp dụng cho các hàm thực, và từ đó có thể khảo sát cho các trường hợp hàm đặc biệt, cho ống-n-thực và dãy các số thực.